Group 2 – Alkaline Earth Metals (Be, Mg, Ca, Sr, Ba, Ra)
1) Position, Valence & Electronic Configuration
· s‑Block, Group 2; all except Be historically termed ‘alkaline earth’ metals.
· Valence shell: ns² → predominant oxidation state +2; compounds largely ionic (higher covalency for Be > Mg).
· Electronic configurations: Be 1s²2s²; Mg [Ne]3s²; Ca [Ar]4s²; Sr [Kr]5s²; Ba [Xe]6s²; Ra [Rn]7s² (radioactive).
2) Physical Properties & Periodic Trends
· Good electrical/thermal conductors; harder and denser than Group 1.
· Radii ↑ down group; smaller than Group 1 analogues in the same period.
· Ionization energies (1st & 2nd) ↓ down group → electropositivity ↑ down group.
· Hydration of M²⁺: Be²⁺ >> Mg²⁺ > Ca²⁺ > Sr²⁺ > Ba²⁺ (decreases down group).
· Electronegativity: very low; decreases Be → Ba.
· Flame colours: Ca brick‑red; Sr crimson; Ba apple‑green; Be/Mg show no colour (electrons tightly bound).
3) Reactivity & Characteristic Reactions
Air & Water
· Be, Mg: surface oxide film → kinetically inert to air/water (powdered Be burns to BeO & Be₃N₂; Mg burns to MgO & Mg₃N₂).
· Ca, Sr, Ba: readily form MO + M₃N₂ in air; react with cold water → M(OH)₂ + H₂ (vigour ↑ down group).
Halogens, Hydrogen, Acids, Ammonia
· Halogens (Δ): M + X₂ → MX₂ (BeX₂ is covalent; others mostly ionic).
· Hydrogen (Δ): MH₂ (BeH₂ prepared via BeCl₂ + LiAlH₄).
· Acids: M + 2HCl → MCl₂ + H₂.
· Liquid NH₃: deep blue/black solutions; ammoniates like [M(NH₃)₆]²⁺ can be isolated.
4) General Characteristics of Compounds
Oxides & Hydroxides
· Oxides: MO (rock‑salt) except BeO (covalent, amphoteric).
· Hydroxides: MO + H₂O → M(OH)₂ (sparingly soluble).
· Trend (Mg → Ba): basicity ↑, thermal stability ↑, and solubility ↑ for M(OH)₂.
· Be(OH)₂ amphoteric: Be(OH)₂ + 2OH⁻ → [Be(OH)₄]²⁻; also dissolves in acids.
Halides
· BeX₂: polymeric chains (solid), bridged dimers (vapour); strong Lewis acid; soluble in organics.
· Mg–Ba halides: predominantly ionic; hydration of chlorides decreases down group (MgCl₂·8H₂O → BaCl₂·2H₂O).
· Fluorides least soluble (high lattice energy).
· Heating hydrates: Be/Mg-halide hydrates hydrolyse; Ca/Sr/Ba hydrates dehydrate to anhydrous salts.
Carbonates, Sulphates, Nitrates
· Carbonates (MCO₃): insoluble in water; solubility ↓ down group; all decompose on heating → MO + CO₂ (stability ↑ down group). BeCO₃ unstable (kept under CO₂).
· Sulphates (MSO₄): BeSO₄, MgSO₄ soluble; solubility decreases Ca → Ba.
· Nitrates (M(NO₃)₂): hydration decreases down group; on heating: 2M(NO₃)₂ → 2MO + 4NO₂ + O₂.
5) Solubility Logic (Why the Trends?)
· Hydroxides: lattice enthalpy drops markedly with bigger M²⁺, outweighing decreased hydration → solubility ↑ down group.
· Carbonates/Sulphates: large anions → lattice enthalpy roughly constant across group; hydration ↓ down group → solubility ↓ down group.
6) Beryllium: Anomalous Behaviour & Diagonal Relationship with Aluminium
· Tiny Be²⁺, high ionisation enthalpy → high polarising power → covalent bonding & hydrolysis.
· Coordination number generally ≤ 4 (no low‑lying d orbitals in valence shell).
· Amphoteric BeO and Be(OH)₂.
· Diagonal relationship (Be ↔ Al): passive to acids (oxide film), amphoteric hydroxides forming [Be(OH)₄]²⁻/[Al(OH)₄]⁻; chloride Lewis acidity; complexes [BeF₄]²⁻/[AlF₆]³⁻.
7) Core Calcium Compounds (Industrial Importance)
Quicklime (CaO)
· Manufacture: CaCO₃ (1070–1270 K) → CaO + CO₂ (continuous CO₂ removal).
· Reactions: CaO + H₂O → Ca(OH)₂ (slaking); CaO + SiO₂ → CaSiO₃; 6CaO + P₄O₁₀ → 2Ca₃(PO₄)₂.
· Uses: cement, cheap alkali, sugar refining, dyestuffs; getter with Ba.
Slaked lime (Ca(OH)₂)
· Lime water (solution), milk of lime (suspension).
· CO₂ test: Ca(OH)₂ + CO₂ → CaCO₃↓ + H₂O; excess CO₂: Ca(HCO₃)₂ (ppt dissolves).
· Bleaching powder step: 2Ca(OH)₂ + 2Cl₂ → CaCl₂ + Ca(OCl)₂ + 2H₂O.
· Uses: mortar/whitewash, glass, tanning, bleaching powder, sugar purification.
Calcium Carbonate (CaCO₃)
· Prep: Ca(OH)₂ + CO₂ → CaCO₃; CaCl₂ + Na₂CO₃ → CaCO₃↓ + 2NaCl (avoid excess CO₂).
· Thermal: CaCO₃ (≈1200 K) → CaO + CO₂; acids liberate CO₂.
· Uses: building marble, quicklime source, flux in metallurgy, precipitated CaCO₃ for paper, antacid, toothpaste abrasive, fillers.
Plaster of Paris (CaSO₄·½H₂O)
· From gypsum at ~393 K: CaSO₄·2H₂O → 2(CaSO₄·½H₂O) + 3H₂O; above 393 K → anhydrous (dead‑burnt).
· Sets with water to a hard mass in 5–15 min; uses: casts, immobilising fractures, dentistry, ornamentation.
Cement (Portland)
· Clinker (lime + clay heated) ground with 2–3% gypsum.
· Typical composition: CaO 50–60%; SiO₂ 20–25%; Al₂O₃ 5–10%; MgO 2–3%; Fe₂O₃ 1–2%; SO₃ 1–2%.
· Quality ratios: SiO₂/Al₂O₃ = 2.5–4; CaO/(SiO₂+Al₂O₃+Fe₂O₃) ≈ 2.
· Main phases: C₃S ~51%, C₂S ~26%, C₃A ~11%; gypsum retards setting (hydration–rearrangement).
8) Elemental Uses & Biological Roles
Uses (Elements)
· Be: Cu–Be springs (high strength); X‑ray tube windows.
· Mg: light alloys (Al/Zn/Mn/Sn) for aircraft; flash/bombs/signals; milk of magnesia; MgCO₃ in toothpaste.
· Ca: reductant for refractory oxides; Ca/Ba as getters in vacuum tubes.
· Ra: radiotherapy salts.
Biological Importance
· Body stores: ~25 g Mg; ~1200 g Ca; daily need ≈ 200–300 mg.
· Mg²⁺: cofactor for ATP‑dependent enzymes; central to chlorophyll; roles in nerve & muscle function.
· Ca²⁺: ~99% in bones/teeth; neuromuscular transmission, membrane integrity, blood coagulation; plasma ~100 mg L⁻¹ regulated by calcitonin & PTH.
10) Must‑Remember Equations
· Air/N₂: 2Mg + O₂ → 2MgO; 3Ca + N₂ → Ca₃N₂.
· Water: M + 2H₂O → M(OH)₂ + H₂ (Be no rxn; Mg hot; Ca/Sr/Ba cold).
· Halogens: M + X₂ → MX₂.
· Hydrides: M + H₂ (Δ) → MH₂; BeCl₂ + LiAlH₄ → BeH₂ + LiCl + AlCl₃.
· Be amphoterism: Be(OH)₂ + 2OH⁻ → [Be(OH)₄]²⁻.
· Limewater: Ca(OH)₂ + CO₂ → CaCO₃↓ + H₂O; +CO₂ → Ca(HCO₃)₂.
· Nitrates (Δ): 2M(NO₃)₂ → 2MO + 4NO₂ + O₂.
· Cement raw step: CaCO₃ → CaO + CO₂; clinker + gypsum → cement.