THE p-BLOCK ELEMENTS → Focus: Group 13 (B, Al, Ga, In, Tl)
A. Quick context: what makes the p-block special
The last electron enters a p orbital. There are 3 p orbitals → up to 6 e⁻ → 6 p-block groups (13–18).
Valence configuration (except He): ns²np¹-⁶.
Inner cores differ (some have d and f electrons) → affects radii, ionization enthalpy (IE), electronegativity (χ), bonding, etc.
Max oxidation state = total valence electrons (s + p). Alternative states often differ by ±2 (inert-pair patterns).
Non-metallic character decreases down a p-group; the heaviest member is usually most metallic.
Oxides: non-metal oxides acidic/neutral; metal oxides basic.
2nd-period elements (B, C, N, O, F) lack valence d orbitals → max covalence 4; heavier congeners may expand beyond 4 (e.g., [AlF₆] ³⁻).
π-bonding: strong pπ–pπ for 2nd row (C=C, C≡C, C=O, etc.); heavier rows rely on dπ–pπ / dπ–dπ (weaker).
B. Group 13 at a glance (Boron family)
Members: B, Al, Ga, In, Tl (Nh synthetic; chemistry not established—omitted).
Valence configuration: ns²np¹.
Cores:
B, Al: noble-gas core
Ga, In: noble-gas + d¹⁰
Tl: noble-gas + 4f¹⁴5d¹⁰
Key consequences
d (and f) poor shielding → d-block (and f-block) contraction, causing Ga radius < Al radius, IE and χ quirks.
Oxidation states: +3 common for all; +1 grows in stability down the group (inert-pair effect): Al < Ga < In < Tl; Tl(I) dominates, Tl (III) strongly oxidising.
Bonding: B tends strictly to covalent (B³⁺ not viable in water); Al, Ga, In form covalent anhydrous halides but ionic aquo species in water (large hydration enthalpy).
C. Atomic / physical data
Metallic (atomic) radius (pm) ↑
B (88) < Ga (135) < Al (143) < In (167) < Tl (170)
• Anomaly: Ga < Al (poor 3d shielding → higher Zeff → smaller Ga).
Ionic radius M³⁺ (pm) ↑
B³⁺ (27) < Al³⁺ (53.5) < Ga³⁺ (62.0) < In³⁺ (80.0) < Tl³⁺ (88.5)
Ionic radius M⁺ (pm) ↑
Ga⁺ (120) < In⁺ (140) < Tl⁺ (150)
(B and Al do not commonly form stable M⁺.)
First ionisation enthalpy, IE₁ (kJ·mol⁻¹) ↑
In (558) < Al (577) ≲ Ga (579) < Tl (589) ≪ B (801)
• Irregularities: Ga slightly > Al (3d contraction); Tl > In (4f contraction).
Second ionisation enthalpy, IE₂ (kJ·mol⁻¹) ↑
Al (1816) < In (1820) < Tl (1971) < Ga (1979) ≪ B (2427)
Third ionisation enthalpy, IE₃ (kJ·mol⁻¹) ↑
In (2704) < Al (2744) < Tl (2877) < Ga (2962) ≪ B (3659)
Electronegativity (Pauling) ↑
Al (1.5) < Ga (1.6) < In (1.7) < Tl (1.8) < B (2.0)
• Trend is not perfectly smooth because of d/f-electron effects.
Density at 298 K (g·cm⁻³) ↑
B (2.35) < Al (2.70) < Ga (5.90) < In (7.31) < Tl (11.85)
Melting point (K) ↑
Ga (303) < In (430) < Tl (576) < Al (933) ≪ B (2453)
• Ga anomaly: exceptionally low mp (liquid near room temp).
Boiling point (K) ↑
Tl (1730) < In (2353) < Ga (2676) < Al (2740) ≪ B (3923)
• Ga: despite low mp, bp is high → huge liquid range.
Standard reduction potential E° (M³⁺/M) (V) ↑ (more reducing → less reducing)
Al (−1.66) < Ga (−0.56) < In (−0.34) < Tl (+1.26)
• Indicates: Al is strongly electropositive (forms Al³⁺ readily); Tl(III) is unstable/oxidising (Tl(I) preferred).
Trends to remember
Ga radius anomaly: Ga < Al (poor 3d shielding → higher Z_eff).
IE pattern: doesn’t decrease smoothly (Ga, Tl show irregularities via d/f contraction).
Ga physical anomaly: mp 303 K (liquid near room temp), bp 2676 K → huge liquid range.
Densities increase down the group.
D. Occurrence & extraction (high-yield)
Occurrence
Boron: mainly as H₃BO₃, borax Na₂B₄O₇·10H₂O, kernite Na₂B₄O₇·4H₂O, colemanite Ca₂B₆O₁₁·5H₂O; crustal abundance < 0.0001% (¹⁰B 19%, ¹¹B 81%).
Aluminium: most abundant metal (~8.3% by mass), ores: bauxite Al₂O₃·xH₂O, cryolite Na₃AlF₆, corundum Al₂O₃.
Ga, In: trace in Al/Zn ores; Tl in sulphide ores (Zn, Pb, Cu, Fe).
Extraction snapshots
Boron: reduce B₂O₃ with Mg/Na; pure crystalline B by reducing BBr₃ with H₂ on hot Ta (1275–1475 K).
Aluminium (Hall–Héroult):
Purify Al₂O₃ from bauxite (Bayer):
Al₂O₃ + 2NaOH + 3H₂O → 2 Na[Al(OH)₄]
SiO₂ + 2NaOH → Na₂SiO₃ + H₂O
2NaAl(OH)₄ + CO₂ → Al(OH)₃↓ + Na₂CO₃ + H₂O
Al(OH)₃ → Al₂O₃ + 3H₂O (Δ)
Dissolve Al₂O₃ in molten cryolite (with CaF₂) at ~1100–1300 K; C-lined cell cathode, C anodes.
Cathode: Al³⁺ + 3e⁻ → Al(l)
Anode: O²⁻ + C → CO/CO₂ (anode consumption)
E. Chemical properties & reactions
1) Oxidation states & Lewis acidity
+3: common; +1 stabilises down group (inert-pair). Tl(I) dominant, Tl(III) oxidising.
Electron-deficient trihalides (e.g., BF₃, BCl₃, AlCl₃) are Lewis acids; BCl₃·NH₃ forms readily.
In water, AlCl₃ etc. hydrolyse to [M(OH)₄]⁻/[Al(H₂O)₆]³⁺, showing sp³/sp³d² (via acceptor levels; boron lacks d—max covalence 4).
2) Action of air/oxygen & nitrogen
Surface oxide: Al forms protective Al₂O₃.
On heating in air: B₂O₃, Al₂O₃ form.
With N₂ at high T → nitrides:
2E + 3/2 O₂ → E₂O₃ (E = B, Al, Ga, In)
2E + N₂ → EN (B, Al)
BN also via: 2B + 2NH₃ → 2BN + 3H₂; or B₂O₃ + 3C + N₂ → 2BN + 3CO
Acid–base of oxides: B₂O₃ acidic; Al₂O₃, Ga₂O₃ amphoteric; In₂O₃, Tl₂O₃ basic. Tl₂O dissolves → TlOH (strong base).
3) Reactivity with water, acids, bases
B inert to acids/alkali at moderate T; hot oxidising acids slowly → H₃BO₃.
2B + 3H₂SO₄ → 2H₃BO₃ + 3SO₂
B + 3HNO₃ → H₃BO₃ + 3NO₂
Al/Ga/In/Tl + warm dilute HCl/H₂SO₄ → M³⁺ (Tl → Tl⁺) + H₂.
2M + 6HCl → 2M³⁺ + 6Cl⁻ + 3H₂
2Tl + 2HCl → 2Tl⁺ + 2Cl⁻ + H₂
Passivation: conc. HNO₃ renders Al, Ga passive (oxide film).
Al/Ga + aqueous alkali → aluminate/gallate + H₂:
Al + 2NaOH + 2H₂O → 2NaAlO₂ + 3H₂
More fully: 2Al + 2NaOH + 6H₂O → 2Na⁺[Al(OH)₄]⁻ + 3H₂
4) Carbon, borides, thermite
Carbides:
4B + C → B₄C (very hard, covalent, abrasive)
4Al + 3C → Al₄C₃ (ionic; Al₄C₃ + 12H₂O → 4Al(OH)₃ + 3CH₄)
Borides: hard, refractory (e.g., TiB₂, ZrB₂).
Thermite (aluminothermy):
Fe₂O₃ + 2Al → Al₂O₃ + 2Fe(l) (≈3300 K)
Also used for MnO₂, Cr₂O₃, etc.
F. Halides of Group 13
1) Boron trihalides: BX₃ (X = F, Cl, Br, I)
Preparation (selected):
B₂O₃ + 3CaF₂ + 3H₂SO₄ → 2BF₃ + 3CaSO₄ + 3H₂O
Na₂B₄O₇ + 6CaF₂ + 8H₂SO₄ → 4BF₃ + 6CaSO₄ + 6NaHSO₄ + 7H₂O
B₂O₃ + 3C + 3Cl₂ (775 K) → 2BCl₃ + 6CO
BI₃: LiBH₄/NaBH₄ + I₂ (400–443 K): BI₃ + LiI/NaI + HI
Properties: volatile; hydrolyse:
BF₃ + 3H₂O → H₃BO₃ + 3HBF₄
BCl₃ + 3H₂O → H₃BO₃ + 3HCl
Structure: trigonal planar (sp²), Lewis acidic.
Back-bonding & acidity: π back-donation BF₃ > BCl₃ > BBr₃ > BI₃ (strongest at F), so Lewis acidity increases: BF₃ < BCl₃ < BBr₃ < BI₃.
Lower dihalides: B₂F₄ (gas), B₂Cl₄ (liquid), less stable than BX₃.
2) Aluminium trihalides: AlX₃
AlF₃: ionic, non-volatile (from Al₂O₃ + HF at 1000 K).
AlCl₃/AlBr₃/AlI₃: covalent dimers Al₂X₆ (halogen bridges); in donor solvents give adducts (AlCl₃·OEt₂, AlCl₃·NMe₃).
Hydrolysis / aquation: [Al(H₂O)₆]³⁺ (acidic), stepwise deprotonation to [Al(H₂O)₂(OH)₄]⁻ in base; gelatinous Al(OH)₃ precipitates near neutral pH (amphoteric).
Friedel–Crafts: strong Lewis acid (AlCl₃).
G. Oxides & hydroxides
B₂O₃ (boron trioxide): white, hygroscopic, acidic, polymeric (-B–O–B–).
Dissolves: B₂O₃ + 3H₂O → 2 B(OH)₃
Fused with metal oxides → metaborates (borax bead colours: Co, Cu, Cr, etc.).
Al₂O₃ (alumina): γ-Al₂O₃ (from ≤750 K dehydration) → reactive, dissolves in acid/base; at ~1500 K converts to α-Al₂O₃ (corundum): very hard, mp ≈ 2328 K, inert.
Trend: acidity → basicity increases down the group:
B₂O₃ acidic → Al₂O₃/Ga₂O₃ amphoteric → In₂O₃/Tl₂O₃ basic; Tl₂O strongly basic (TlOH ≈ strong base).
H. Oxoacids of Boron & Borates
1) Orthoboric acid: H₃BO₃ (= B(OH)₃)
Prep: Na₂B₄O₇ + 2HCl + 5H₂O → 2NaCl + 4B(OH)₃
(also by hydrolysis of many boron compounds).
Structure: layered sheets of trigonal BO₃ units (H-bonded).
Acidity: Lewis acid (accepts OH⁻), not Brønsted:
B(OH)₃ + 2H₂O ⇌ [B(OH)₄]⁻ + H₃O⁺ (very weak, pK_a ~9.25).
Strength increases with polyols (mannitol, glycerol) → analytical titration.
Heating: H₃BO₃ (Δ ≥ 370 K) → HBO₂ (metaboric); further Δ > 500 K → B₂O₃.
2) Borax: Na₂B₄O₇·10H₂O (actually Na₂[B₄O₅(OH)₄]·8H₂O)
Hydrolysis: Na₂B₄O₇ + 7H₂O → 2NaOH + 4H₃BO₃ (alkaline solution).
Heating:
Na₂B₄O₇·10H₂O → Na₂B₄O₇ (Δ)
Na₂B₄O₇ → 2NaBO₂ + B₂O₃ (Δ)
Borax bead: metaborates of transition metal ions give diagnostic colours.
From colemanite: Ca₂B₆O₁₁ + 2Na₂CO₃ → Na₂B₄O₇ + 2NaBO₂ + 2CaCO₃; then 4NaBO₂ + CO₂ → Na₂B₄O₇ + Na₂CO₃.
I. Hydrides & boranes; key reducing agents
1) Diborane (B₂H₆)
Preparations
4BF₃ + 3LiAlH₄ → 2B₂H₆ + 3LiF + 3AlF₃ (Et₂O)
2NaBH₄ + H₂SO₄ → B₂H₆ + 2H₂ + Na₂SO₄ (also with H₃PO₄)
2NaBH₄ + I₂ → B₂H₆ + 2NaI + H₂
Industry: 2BF₃ + 6NaH (450 K) → B₂H₆ + 6NaF
Properties: colourless, toxic gas (bp 180 K), spontaneously flammable; hydrolyses completely:
B₂H₆ + 6H₂O → 2B(OH)₃ + 6H₂
Combustion: B₂H₆ + 3O₂ → B₂O₃ + 3H₂O (ΔH_c ≈ −1976 kJ·mol⁻¹)
Structure (must-know!):
4 terminal B–H 2c–2e bonds (in the B–B plane).
2 bridging B–H–B 3c–2e “banana” bonds (above/below plane).
Adduct formation (cleavage by bases):
B₂H₆ + 2NMe₃ → 2BH₃·NMe₃
B₂H₆ + 2CO → 2BH₃·CO
With NH₃ (on heating): B₃N₃H₆ (borazine) + H₂ (via [BH₂(NH₃) ₂]⁺[BH₄] ⁻).
2) Borohydrides / hydridoborates
[BH₄] ⁻ tetrahedral.
2MH + B₂H₆ → 2M⁺[BH₄] ⁻ (M = Li, Na).
NaBH₄ (selective; aldehydes/ketones → alcohols) vs LiAlH₄ (powerful, less selective; reacts with H₂O):
LiAlH₄ + 4H₂O → LiOH + Al(OH)₃ + 4H₂
4BCl₃ + 3LiAlH₄ → 2B₂H₆ + 3LiCl + 3AlCl₃
3) Aluminium hydride (AlH₃)
Polymeric (AlH₃)ₙ; from LiAlH₄ + H₂SO₄ / AlCl₃; reacts with protic reagents to give H₂.
J. Borazine (B₃N₃H₆) — “inorganic benzene”
Prepared via BCl₃ + NH₄Cl → B-trichloroborazine, then reduction with NaBH₄; or from B₂H₆ + NH₃ (see above).
Planar hexagon, alternating B–N; partial π-delocalisation (more reactive than benzene).
Polarisation: B δ⁺ / N δ⁻ overall (σ-bond polarity dominates) → nucleophilic attack at B; adds H₂O/MeOH/HX to give 1:3 adducts (lose H₂ on heating).
K. Complex formation & alums
Boron: max CN = 4 (no d); e.g., [BF₄]⁻, [BH₄]⁻, BH₃·L adducts, chelates [B(O-C₆H₄O)₂]⁻.
Al/Ga/In/Tl: CN up to 6 (acceptor orbitals): adducts AlCl₃·L (CN 4/5), [AlF₆]³⁻ (CN 6).
Alums: MAl(SO₄)₂·12H₂O (M = K, Rb, Cs, NH₄…) are double salts (not complexes), isomorphous; e.g., potash alum KAl(SO₄)₂·12H₂O, ammonium alum NH₄Al(SO₄)₂·12H₂O; analogues with Cr³⁺, Fe³⁺ (chrome/ferric alum).
L. Applications
Boron: very hard, low density, low conductivity → fibres (composites, armor), neutron absorbers (¹⁰B; borides as control/shield).
Boron compounds: borax/boric acid in Pyrex/borosilicate glass, glazes, bead test; peroxyborates (cleaning).
Aluminium: light, strong, conductive → structural alloys (duralumin, magnalium), transport, packaging/foil, cookware (use declining due to toxicity concerns), anodising (hard Al₂O₃ film).
Ga: electronics (GaAs, GaN); long liquid range (thermometry).
In: bearings, low-m.p. alloys, electronics.
Tl: fungicides (toxic), high-index optical glass.
M. Why Ga is “smaller than Al” (and other anomalies)
Inserting a filled 3d¹⁰ subshell between Al and Ga yields poor shielding, so Ga’s outer electrons feel larger Zeff → smaller radius, higher IE/χ than a naive trend would suggest.
Similar reasoning with 4f affects Tl.
N. Important points
Passivation of Al by conc. HNO₃: a thin, coherent Al₂O₃ film forms, stopping further attack.
Why BCl₃ is gaseous but AlCl₃ dimerises (Al₂Cl₆): B (no d) uses pπ–pπ back-bonding to “complete” octet; Al lacks effective pπ overlap, so dimerises via Cl bridges.
Why BF₆³⁻ doesn’t exist: B (n=2) cannot expand octet; max covalence 4.
Standard potentials: Al³⁺/Al (−1.66 V) → Al³⁺ favoured (electropositive metal); Tl³⁺/Tl (+1.26 V) → Tl(III) unstable/oxidising; Tl(I) more stable in solution.
O. All reactions (collected for revision)
Oxides/nitrides (air/N₂):
2E + 3/2 O₂ → E₂O₃ (E = B, Al, Ga, In)
2E + N₂ → EN (B, Al); BN also from B₂O₃ + 3C + N₂ → 2BN + 3CO; or 2B + 2NH₃ → 2BN + 3H₂
Acids/alkali:
2B + 3H₂SO₄ → 2H₃BO₃ + 3SO₂
B + 3HNO₃ → H₃BO₃ + 3NO₂
2M + 6HCl → 2M³⁺ + 6Cl⁻ + 3H₂ (Tl → Tl⁺ + H₂)
2Al + 2NaOH + 6H₂O → 2Na⁺[Al(OH)₄]⁻ + 3H₂
Carbides/borides:
4Al + 3C → Al₄C₃; Al₄C₃ + 12H₂O → 4Al(OH)₃ + 3CH₄
4B + C → B₄C
Borides: MgB₂, TiB₂, ZrB₂, etc.
Thermite (examples):
Fe₂O₃ + 2Al → Al₂O₃ + 2Fe(l)
3MnO₂ + 4Al → 2Al₂O₃ + 3Mn
Trihalides (prep):
B₂O₃ + 3CaF₂ + 3H₂SO₄ → 2BF₃ + 3CaSO₄ + 3H₂O
Na₂B₄O₇ + 6CaF₂ + 8H₂SO₄ → 4BF₃ + 6CaSO₄ + 6NaHSO₄ + 7H₂O
B₂O₃ + 3C + 3Cl₂ (775 K) → 2BCl₃ + 6CO
Al₂O₃ + 6HF (1000 K) → 2AlF₃ + 3H₂O
2Al + 3X₂ → 2AlX₃; Al₂O₃ + 3C + 3Cl₂ → 2AlCl₃ + 3CO
Hydrolysis/adducts:
BCl₃ + 3H₂O → H₃BO₃ + 3HCl
BF₃ + 3H₂O → H₃BO₃ + 3HBF₄
BCl₃ + :NH₃ → BCl₃·NH₃
Al₂Cl₆ + (Et₂O) → 2(Et₂O·AlCl₃)
Boric acid & borax:
Na₂B₄O₇ + 2HCl + 5H₂O → 2NaCl + 4B(OH)₃
B(OH)₃ + 2H₂O ⇌ [B(OH)₄]⁻ + H₃O⁺
H₃BO₃ (Δ) → HBO₂ (Δ) → B₂O₃
Na₂B₄O₇·10H₂O →(Δ) Na₂B₄O₇ →(Δ) 2NaBO₂ + B₂O₃
Ca₂B₆O₁₁ + 2Na₂CO₃ → Na₂B₄O₇ + 2NaBO₂ + 2CaCO₃
4NaBO₂ + CO₂ → Na₂B₄O₇ + Na₂CO₃
Diborane & hydrides:
4BF₃ + 3LiAlH₄ → 2B₂H₆ + 3LiF + 3AlF₃
2NaBH₄ + I₂ → B₂H₆ + 2NaI + H₂
2NaBH₄ + H₂SO₄ → B₂H₆ + 2H₂ + Na₂SO₄
B₂H₆ + 6H₂O → 2B(OH)₃ + 6H₂
2MH + B₂H₆ → 2M⁺[BH₄]⁻ (M = Li, Na)
LiAlH₄ + 4H₂O → LiOH + Al(OH)₃ + 4H₂
4BCl₃ + 3LiAlH₄ → 2B₂H₆ + 3LiCl + 3AlCl₃
B₂H₆ + 2NMe₃ → 2BH₃·NMe₃
B₂H₆ + 2CO → 2BH₃·CO